skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Pengtao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Vehicle behaviour prediction provides important information for decision‐making in modern intelligent transportation systems. People with different driving styles have considerably different driving behaviours and hence exhibit different behaviour tendency. However, most existing prediction methods do not consider the different tendencies in driving styles and apply the same model to all vehicles. Furthermore, most of the existing driver classification methods rely on offline learning that requires a long observation of driving history and hence are not suitable for real‐time driving behaviour analysis. To facilitate personalised models that can potentially improve vehicle behaviour prediction, the authors propose an algorithm that classifies drivers into different driving styles. The algorithm only requires data from a short observation window and it is more applicable for real‐time online applications compared with existing methods that require a long term observation. Experiment results demonstrate that the proposed algorithm can achieve consistent classification results and provide intuitive interpretation and statistical characteristics of different driving styles, which can be further used for vehicle behaviour prediction. 
    more » « less